

Harnessing Noise and Invisibles: Micro-Signal Analytics for Healthcare and Physiological Forensics

Mín Wu

Media and Security Team (MAST) ECE Department / UMIACS University of Maryland, College Park

http://www.ece.umd.edu/~minwu/research.html

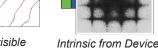
Include joint research with Wei-Hong Chuang, Adi Hajj-Ahmad, Ravi Garg, Hui Su, Avinash Varna, Chau-Wai Wong, Qiang Zhu, C-H. Fu, Xin Tian, Mingliang Chen, and Yuenan Li.

THE A. JAMES CLARK SCHOOL of ENGINEERING

UNIVERSITY OF MARYLAND

Micro-Signals for Forensics

- "Micro signal" is small in terms of:
 - Amplitude than dominating signals (by 1+ order of magnitude)
 - Topological scale

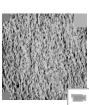


Embed invisible · How was an image

 Label each copy Deter leak & protect

tracer

generated? Tampered? Emerging use in bio/med privacv/sensitive info research integrity



camera to detect

counterfeit

surfaces

Comina from environment:

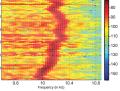
- synch multi

sensing streams

Face color signa from motion video

Physiological monitoring

- Micro-Signals for Forensics
- "Micro signal" is small in terms of:
 - Amplitude than dominating signals (by 1+ order of magnitude)
 - Topological scale



Face color signal from motion video

Physiological monitoring

· Heart rate, etc.

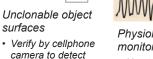
Micro-Signal Meets Health: Physiology Forensics

- Heart rate monitoring in home and fitness
 - Contact based: electrodes, chest belts, and finger clips.
 - Contact-free: more user-friendly, but challenging to design.

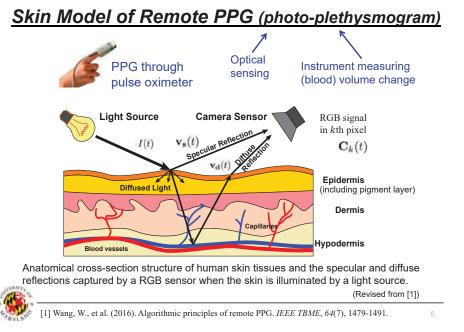
- Although naked eyes cannot see it
- Prior work: (Verkruvesse et al OptExp'08 etc.) "rest case" with little or small motions

- Challenging cases: videos with significant motions
 - Fitness/athletic training (running on treadmill, ...); Driving;
 - Contact-free monitoring for children in special needs; Surveillance

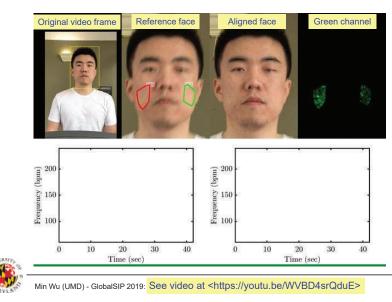
Video Source: M. Rubinstein, N. Wadhwa, F. Durand, W. T. Freeman, "Revealing invisible changes in the world," Science, vol.339(6119), Feb. 2013.



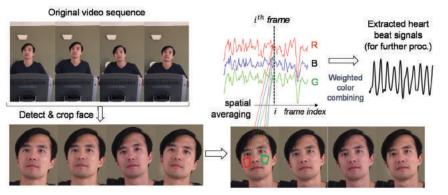
· Heart rate. etc.



"Seeing" Heart Rate in Motion: No Touch Needed



High-Res Motion Compensation & Face Alignm.



- Face color signal: by spatial averaging over Regions of Interest (ROI)
- Pre-processed signal is achieved by a suitable linear combination of three color channels
 - Detailed study by Philips Research on various ways of color combining

A Forensics Detour: Finding "Time + Location"



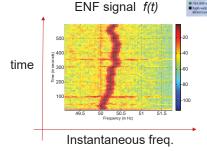
- When was the video actually shot? And where?
- Was the sound track captured at the same time as the picture? Or super-imposed afterward?
- Explore fingerprint influenced by power grid onto sensor
 recordings

0

Ubiquitous Forensic Fingerprints from Power Grid

- Electric Network Frequency (ENF): 50 or 60 Hz nominal
 - Change slightly due to demand-supply
 - Main trends consistent in same grid

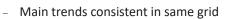
olling

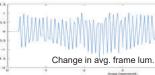


Min Wu (UMD) - GlobalSIP 2019: Micro-Signals for Health & Foßensices US Grid image is from InTech online 13

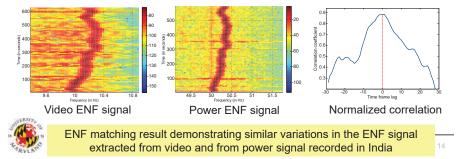
Ubiquitous Forensic Fingerprints from Power Grid

- Electric Network Frequency (ENF):
 - Change slightly due to demand-supply



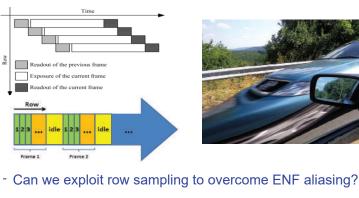


- ENF can bee "seen" or "heard" in sensor recordings
 - Power grid influences electronic sensing (E/M interference, vibration etc)
 - Help determine recording time/location, detect tampering, etc.



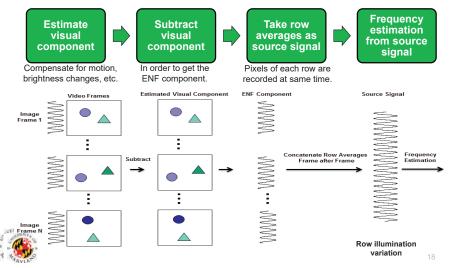
Overcome ENF Aliasing: CMOS Rolling Shutter

- CMOS imaging sensors: Low cost; low power
- Rolling shutter in CMOS sensor: sequential row readout
 - Different rows exposed at different time
 - Often considered bad: distortions on fast moving scenes (see wiki)

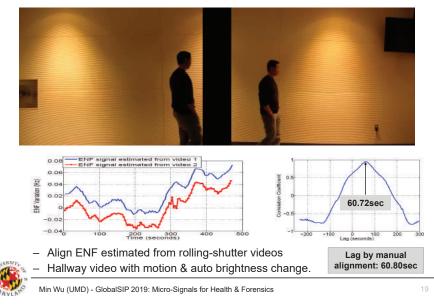


Align Visual Streams using ENF Row Signals

• Video signal: combination of visual component and ENF component.



Synchronize Multiple Videos by Power Trace



Synchronize Video by Intrinsic Power Trace

- Demo-1: With disappearing objects & different viewing angles
 After synch by ENF in visual tracks
- Demo-2: Videos at different locations
 - After synch by ENF in audio tracks

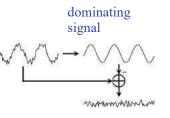


Min Wu (UMD) - GlobalSIP 2019: Micro-Signals for Health & Forensics

Extraction Strategies of Micro Signal

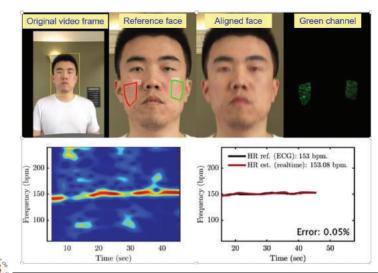
Residue analysis

- Dominant signals disguise micro signals (overall lighting, motion, etc.)
- Estimate and compensate dominant signals to reveal residues
 - => Improve micro signal SNR
- "Detrending" takes domain knowledge & synergistic expertise for micro signal
- Statistical source separation:
 - Apply ICA to isolate components
 - PCA or Singular Spectrum Analysis (SSA)
- Physical model/properties help
 - E.g. sinusoidal model in power sig. analytics



manumman

Return from Detour: "Seeing" Heart Rate in Motion



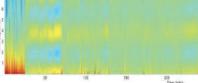
Min We

Min Wu (UMD) - @lobæl\$@h20A8alylices-Sig<mark>i See video at <https://youtu.be/WVBD4srQduE></mark>

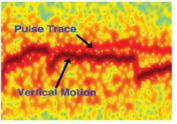
Robust Tracking of Weak Noisy Traces

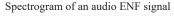
- Trace tracking in many applications
- Challenges: very noisy + weak traces
 - Very low SNR; strong interference from other sources
 - Varying, unforeseen distortions
 - Multiple frequencies of interest
 - Need a good general/universal method: esp. with limited instances to learn

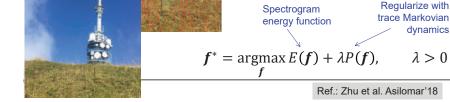
Preproc. Visualization from Radio Analytics *



Spectrogram of a rPPG signal

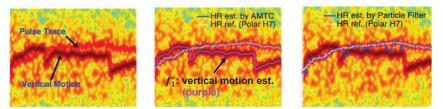






Experimental Result (HR using remote PPG)

• Fitness pulse signal using video-based rPPG method



(a) (b) (c) (a) Weak heart pulse embedded in a strong trace induced by vertical motion running on a elliptical machine. (b) Heart rate estimation after compensating first trace estimate using AMTC. (c) Heart rate estimation using motion spectrogram notching and particle filter method.

N	lethod	RMSE in bpm		ECOUNT		ERATE	
		ĥ	$\hat{\sigma}$	ĥ	$\hat{\sigma}$	ĥ	$\hat{\sigma}$
N	IN+PF	5.29	5.51	9.41%	14.13%	2.20%	2.24%
A	AMTC	2.11	1.11	3.16%	6.04%	1.02%	0.56%
Perf	ormance	e of AM	C and Mo	otion Note	hina + Pa	rticle Filte	r method

Min Wu (UMD) - GlobalSIP 2019: Micro-Signals for Health & Forensics

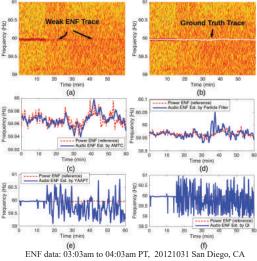
Experimental Result (ENF from audio)

Audio ENF data

- 27 pairs of 1-hour power grid signal and audio signal from a variety of locations in North America (Nominal ENF: 60 Hz)
- Recorder: Olympus Voice _ Recorder WS-700M $(f_{s}=44.1 \text{ kHz})$

Performance of various methods on ENF data

Method	RMSE	in Hz	Pearson's p	
	Â	ô	Â	ô
QI	0.24	0.18	0.18	0.26
Particle Filter	0.04	0.07	0.55	0.37
YAAPT	0.16	0.12	0.23	0.28
AMTC	0.01	0.01	0.85	0.18



Experiment: 3 synthetic signals (-10dB)

dynamics

 $\lambda > 0$

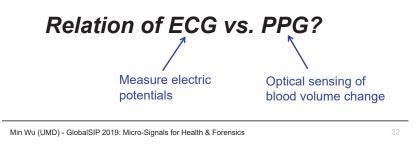
Min Wu (UMD) - GlobalSIP 2019: Micro-Signals for Health & Forensics

Seam-Carving Inspired Weak-Trace Tracking

Pushing the Envelope:

Can we "see" ECG?

An Enabling Step ...



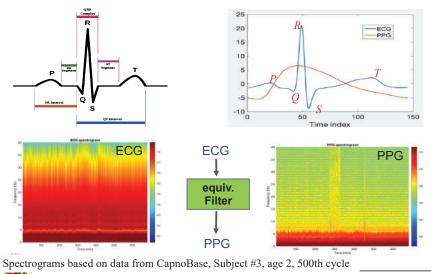
Promising or Skeptical: Cardio from Wearables?

- Wearables for heart rate monitoring in home & fitness
 - Chest belt (related to 1-lead ECG) ~ gold standard in sports

• ECG vs. PPG (photo-plethysmogram)

	ECG	PPG			
What does it measure?	Electrical potential signal of cardio activities	Optical measurement of the cardio-induced blood volume changes			
Accuracy & knowledge base	+ Clinical gold standard; Rich knowledge base	 Indirect to cardio function; Limited cardio knowledge from PPG directly; Prone to motion artifacts due to loose contact etc. 			
Comfort	 Restrictive on user activities and uncomfortable 	+ More user friendly; possible to be contact-free by video etc.			
Cont's long- term use	- Specialized equipment (Holter, Zio etc.); skin irritation w/ adhesive wear	+ Long-term wear possible w/o constant user intervention			
Image source: <u>https://www.indiamart.com/proddetail/ecg-machine-leads-11806445962.html</u> , 33 http://datagenerships.world/ligh.world/ligh.world.figh.source: https://www.indiamart.com/proddetail/ecg-machine-leads-11806445962.html, 33					

Typical Pattern: Waveforms & Spectrograms



Min Wu (UMD) - GlobalSIP 2019: Micro-Signals for Health & Forensics mage: https://en.wikipedia.org/wiki/Electrocardiography

Can we obtain ECG from PPG?

Enable user-friendly, low-cost, long-term &

• Benefits if this could be done:

Support & promote public health and more

- continuous cardio monitoring
- Facilitate studies on patients w/ special needs (autism, etc.)
- Leverage rich ECG knowledge and "transfer" it to build knowledge base for PPG and data from wearables

not just blackbox data-driven AI but medically explainable

• Two major research issues

1. Can we infer ECG from a clean PPG? ← most fundamental

- Patient independent (inference for a group of patients, e.g. by age, gender etc.) vs. Patient specific (refine with specific patient info.)
- Role of disease types on the inference model?

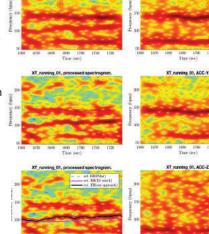
2. Can we clean up PPG due to movement etc.?

Leverage multiple sensors (e.g. accelerometers)

Min Wu (UMD) - GlobalSIP 2019: Micro-Signals for Health & Forensics

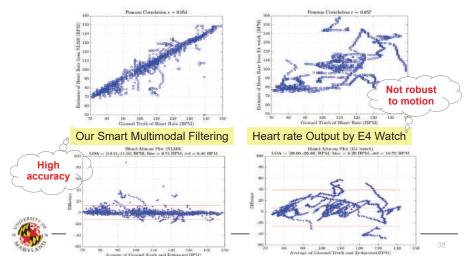
Clean up PPG in Prep for Signal Analytics

- Combined proc. from noisy PPG + accelerometer signals
 - SP Cup 2015 Heart rate (Zhang@ Samsung; Schack et al.@TU Darmstadt)
- Joint adaptive sp + robust trace tracking (on UMD E4 Dataset)
 - Improved heart rate accuracy than Empatica E4 under motion
 - Compared to gold standard for HR in fitness (Polar cheststrap)



Accuracy Comparison of PPG Clean-up (UMD E4 Dataset)

- Heart rate estimates: 22 sessions total of 5 subjects; jump, walk, run, row, still
- Pearson correlation (w.r.t. chest-strap ref.); Bland-Altman plot 95%



Can we obtain ECG from PPG?

- Benefits if this could be done:
 - Enable user-friendly, low-cost, long-term & continuous cardio monitoring
 - Facilitate studies on patients w/ special needs (autism, etc.)
 - Leverage rich ECG knowledge and "transfer" it to build knowledge base for PPG and data from wearables

not just blackbox data-driven Al but medically explainable

Support & promote

public health and more

• Two major research issues

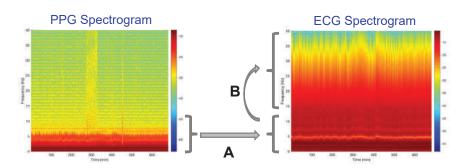
1. Can we infer ECG from a clean PPG? ← most fundamental

- Patient independent (inference for a group of patients, e.g. by age, gender etc.) vs. Patient specific (refine with specific patient info.)
- Role of disease types on the inference model?

2. Can we clean up PPG due to movement etc.?

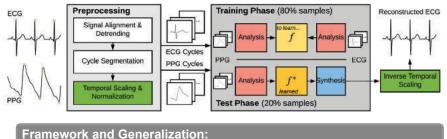
Leverage multiple sensors (e.g. accelerometers)

PPG to ECG: Methodology At-a-Glance



- A. Reconstruct lower-freq. spectrum via inverse filtering type of operation
- B. Reconstruct extended spectrum by exploiting correlation/sig. properties
- → Can combine the two steps with model+data supported learning

A Cycle-level Learning Framework



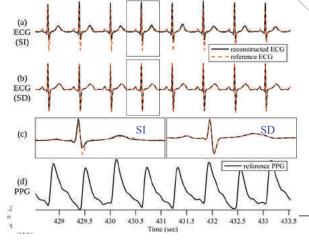
The manning f can be a linear transform (first tries.

- The mapping *f* can be a linear transform (first tries, BHI'19), and generalized to nonlinear mappings or transforms (e.g., learnt from data via neural networks).
- The analysis mechanism can be DCT (BHI'19) or other mapping/transform, e.g. learned with *f* via dictionary learning or neural networks.
- By further exploring (big) data with detailed patient profiles, a more complex model may be learned based on biomedical, statistical, and physical meanings of the signals to better capture the relation of PPG and ECG.

Min Wu (UMD) - GlobalSIP 2019: Micro-Signals for Health & Forensics

Subject Dependent (SD) vs. Independent (SI) Model

- · SD: training and testing on different data from the same subject
- · SI: one model trained with all training data from multiple subjects



SI is more challenging to be accurate; may explore by age, gender, etc.

PPG-to-ECG example (on CapnoBase)

· 4 years old, weight 18 kg

Pearson's correlation coeff. of inferred ECG from PPG:

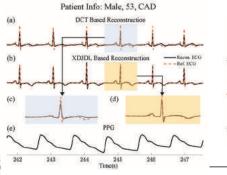
0.991 in SD mode

0.883 in SI mode

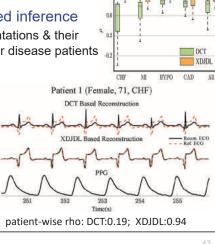
See BHI'19 paper, slides at http://sigport.org/4558

DCT Based vs. Joint Dictionary Learning

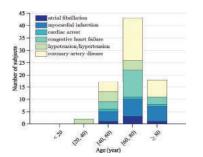
- DCT: near-optimal data-independent for highly correlated data => focus on learning PPG-ECG relations
- Dictionary learning w/ improved inference
 - Jointly learn ECG/PPG representations & their relation from data, esp. useful for disease patients



patient-wise rho: DCT:0.80; XDJDL:0.85

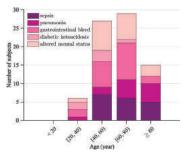


Mini-MIMIC Database: ICU Patient Profile



Total # of cardiac patients: 80

- Atrial fibrillation: 5
- Myocardial infarction: 17
- Cardiac arrest: 3
- Congestive heart failure: 17
- Hypotension/hypertension: 10
 - Coronary artery disease: 28

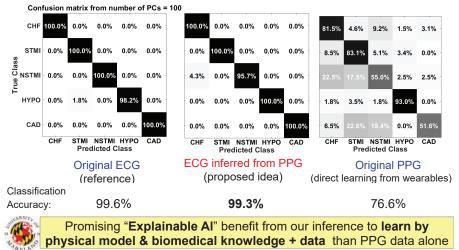


Total # of non-cardiac patients: 77

- Sepsis: 18
- Pneumonia: 13
- Gastrointestinal bleed: 21
- Diabetic ketoacidosis: 6
- Altered mental status: 19

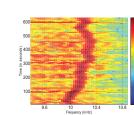
Prelim Results: Cardio Disease Classification

 Confusion matrices & classification accuracy of SVM (w/ polynomial kernel) on 3 types of data: original ECG vs. inferred ECG vs. original PPG

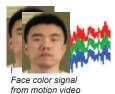


Recap: Exploiting Micro-Signals

- Harnessing "Micro Signals" for health analytics and physiological forensics
- Cross-cutting Synergy of multiple SPS tech areas
- Benefits and cautions:
 - Physio. w/o needing active user involvement
 - Privacy implications: e.g. in surveillance
- Outlook: promising use of physiological micro-signals in detecting fake media

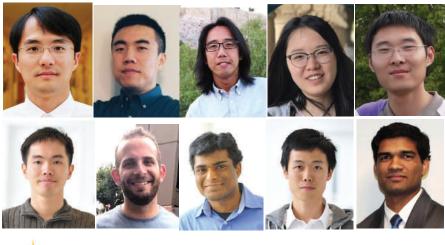


Coming from environment



Physiological monitoring • Heart rate, breathing, etc.

Min Wu (UMD) - GlobalSIP 2019: Micro-Signals for Health & Forensics



 Include joint work with colleagues, graduate & REU students

 Wei-Hong Chuang, Adi Hajj-Ahmad, Ravi Garg, Hui Su, Avinash Varna; Chau-Wai Wong,

 Media
 Qiang Zhu, Chang-Hong Fu, Xin Tian, Mingliang Chen, Yuenan Li, J. Su.

 Security
 Michael Luo (MERIT REU), Maggie Xiong (REU), J. Luo (REU).

MAST